RabbitMQ架构,第1张

RabbitMQ是一个分布式系统

一、使用rabbitmq时的系统架构图

通过路由键将交换机和队列进行绑定,从而实现消息的发送和接收。

二、rabbitmq基本概念

rabbitmq是AMQP协议的一个开源实现,所以其内部实际上也是AMQP中的基本概念,如下图所示:

1、Message(消息)

消息是不具名的,它由消息头和消息体组成。消息体是不透明的,而消息头则由一系列的可选属性组成,这些属性包括routing-key(路由键)、priority(相对于其他消息的优先权)、delivery-mode(传输模式,指出该消息可能需要持久化存储)等。

2、Publisher

消息生产者,也是一个向交换器发布消息的客户端应用程序,就是投递消息的程序。

3、Exchange

交换器,用来接收生产者发送的消息并将这些消息路由给服务器中的队列。消息交换机,它指定消息按什么规则,路由到哪个队列。

4、Routing Key

路由关键字,exchange根据这个关键字进行消息投递。

5、Binding(绑定)

用于消息队列和交换器之间的关联。一个绑定就是基于路由键将交换器和消息队列连接起来的路由规则,所以可以将交换器理解成一个由绑定构成的路由表。

它的作用就是把exchange和queue按照路由规则绑定起来。

绑定其实就是关联了exchange和queue,或者这么说:queue对exchange的内容感兴趣,exchange要把它的Message deliver到queue。

6、Queue(消息队列)

消息的载体,每个消息都会被投到一个或多个队列,等待消费者连接到这个队列将其取走。它是消息的容器,也是消息的终点。

7、Connection

网络连接,例如一个TCP连接。

8、Channel(信道,通道)

消息通道,在客户端的每个连接里,可建立多个channel。

多路复用连接中的一条独立双向数据流通道。信道是建立在真实的TCP连接内的虚拟连接,AMQP命令都是通过信道发出去的,不管是发布消息、订阅队列还是接收消息,这些动作都是通过信道完成。因为对于操作系统来说建立和销毁TCP都是非常昂贵的开销,所以引入了信道的概念以达到复用一条TCP连接的目的。

9、Consumer

消息消费者,表示一个从消息队列中取得消息的客户端应用程序,就是接受消息的程序。

10、Virtual Host

虚拟主机,表示一批交换器、消息队列和相关对象。一个broker里可以有多个vhost,用作不同用户的权限分离。虚拟主机是共享相同的身份认证和加密环境的独立服务器域。每个vhost本质上就是一个mini版的rabbitmq服务器,拥有自己的队列、交换器、绑定和权限机制。

vhost是AMQP概念的基础,必须在连接时指定,rabbitmq默认的vhost是 / 。

11、Broker

表示消息队列服务器实体。它提供一种传输服务,它的角色就是维护一条从生产者到消费者的路线,保证数据能按照指定的方式进行传输。

三、AMQP中的消息路由

生产者把消息发布到Exchange上,消息最终到达队列并被消费者接收,而Binding决定交换器的消息应该发送到那个队列。如下图所示:

四、Exchange类型

Exchange分发消息时根据类型的不同分发策略有区别,目前共有四种类型:direct、fanout、topic、headers。headers匹配AMQP消息的header而不是路由键,此外headers交换器和direct交换器完全一致,但性能差很多,目前几乎用不到。且看direct、fanout、topic这三种类型。

1、direct类型

消息中的路由键routing key如果和Binding中的binding key一致,交换器就将消息发到对应的队列中去。路由键与队列名完全匹配,如果一个队列绑定到交换器要求路由键为“dog”,则只转发routing key标记为“dog”的消息,不会转发“dogpuppy”等等。 它是完全匹配、单传播的模式。

Driect exchange的路由算法非常简单:通过bindingkey的完全匹配,可以用下图来说明:

Exchange和两个队列绑定在一起,Q1的bindingkey是orange,Q2的binding key是black和green。

当Producer publish key是orange时,exchange会把它放到Q1上,如果是black或green就会到Q2上,其余的Message被丢弃。

2、fanout类型

每个发到fanout类型交换器的消息都会分到所有绑定的队列上去。fanout交换器不处理路由键,只是简单的将队列绑定到交换器上,每个发送到交换器的消息都会被转发到与该交换器绑定的所有队列上。类似于子网广播,每台子网内的主机都获得了一份复制的消息。 fanout类型转发消息是最快的。  如下图所示:

3、topic类型

topic交换器通过模式匹配分配消息的路由键属性,将路由键和某个模式进行匹配,此时队列需要绑定到一个模式上。它将路由键和绑定键的字符串切分成单词,这些单词之间用点隔开。它同样也会识别两个通配符:#和,#匹配0个或多个单词,只能匹配一个单词。

对于Message的routing_key是有限制的,不能是任意的。格式是以点号“”分割的字符表。比如:”stockusdnyse”,“nysevmw”, “quickorangerabbit”。你可以放任意的key在routing_key中,当然最长不能超过255 bytes。对于routing_key,有两个特殊字符#和,#匹配0个或多个单词,只能匹配一个单词。如下图所示:

Producer发送消息时需要设置routing_key,routing_key包含三个单词和两个点号,第一个key描述了celerity(灵巧),第二个是color(色彩),第三个是物种。

在这里我们创建了两个绑定: Q1 的binding key 是”orange“; Q2 是 “rabbit” 和 “lazy#”:Q1感兴趣所有orange颜色的动物;Q2感兴趣所有rabbits和所有的lazy的。

例如:rounting_key 为 “quickorangerabbit”将会发送到Q1和Q2中。rounting_key 为”lazyorangerabbithujjddd”会被投递到Q2中,#匹配0个或多个单词。

五、ConnectionFactory、Connection、Channel

ConnectionFactory、Connection、Channel都是RabbitMQ对外提供的API中最基本的对象。

1、Connection

Connection是Rabbitmq的socket连接,它封装了socket协议相关部分逻辑。

2、ConnectionFactory

ConnectionFactory是connection的制造工厂。

3、Channel

Channel是我们与rabbitmq打交道的最重要的一个接口,大部分的业务操作是在Channel这个接口中完成的,包括定义Queue、定义Exchange、绑定Queue与Exchange、发布消息等。

六、任务分发机制

1、Round-robin dispathching 循环分发

RabbbitMQ的分发机制非常适合扩展,而且它是专门为并发程序设计的,如果现在load加重,那么只需要创建更多的Consumer来进行任务处理。

2、Message acknowledgment 消息确认

为了保证数据不被丢失,RabbitMQ支持消息确认机制,为了保证数据能被正确处理而不仅仅是被Consumer收到,这就需要在处理完数据之后发送一个确认ack。

在处理完数据之后发送ack,就是告诉RabbitMQ数据已经被接收并且处理完成,RabbitMQ可以将消息从队列中移除了。如果Consumer退出了但是没有发送ack,那么RabbitMQ就会把这个Message发送到下一个Consumer,这样就保证在Consumer异常退出情况下数据也不会丢失。

RabbitMQ没有用到超时机制,它仅仅通过Consumer的连接中断来确认该Message并没有被正确处理,一个消费者处理消息的时间再长也不会导致该消息被发送给其他消费者,即RabbitMQ给了Consumer足够长的时间来做数据处理。如果忘记ack,那么当Consumer退出时,Mesage会被重新分发,从而导致队列中的累积的消息越来越多,然后RabbitMQ会占用越来越多的内存。

3、Message durability 消息持久化

如果我们希望即使在rabbitmq服务重启的情况下,也不会丢失消息,我们可以将Queue与Message都设置成可持久化的(durable),这样就可以保证绝大部分情况下我们的rabbitmq消息不会丢失。但依然解决不了小概率丢失事件的发生(例如rabbitmq服务器已经接收到了生产者的消息,但还没来得及持久化该消息时rabbitmq服务器就断电了)。如果也要将这种小概率事件管理起来就需要使用到事务了。要持久化队列需要在声明时指定durable=True;这里要注意,队列的名字一定要是Broker中不存在的,不然不能改变此队列的任何属性。队列和交换机有一个创建时候指定的标志durable,durable的唯一含义就是让具有这个标志的队列和交换机会在重启之后重新建立。

消息持久化包括3部分

(1)exchange持久化,在声明时指定durable => true

channelExchangeDeclare(ExchangeName,"direct", durable:true, autoDelete:false, arguments:null);//声明消息队列,且为可持久的

(2)queue持久化,在声明时指定durable => true

channelQueueDeclare(QueueName, durable:true, exclusive:false, autoDelete:false, arguments:null);//声明消息队列,且为可持久的

(3)消息持久化,在投递时指定delivery_mode => 2(1是非持久化)。

channelbasicPublish("", queueName, MessagePropertiesPERSISTENT_TEXT_PLAIN, msggetBytes());

如果exchange和queue都是持久化的,那么它们之间的binding也是持久化的;如果exchange和queue两者之间有一个持久化,一个非持久化,则不允许建立绑定。

注意:一旦创建了队列和交换机,就不能修改其标志了。例如创建了一个non-durable的队列,然后想把它改变成durable的,唯一的办法就是删除这个队列然后重新创建。

4、Fair dispath 公平分发

你可能也注意到了,分发机制不是那么优雅,默认状态下,RabbitMQ将第n个Message分发给第n个Consumer。n是取余后的,它不管Consumer是否还有unacked Message,只是按照这个默认的机制进行分发。那么如果有个Consumer工作比较重,那么就会导致有的Consumer基本没事可做,有的Consumer却毫无休息的机会,那么Rabbit是如何处理这种问题呢

通过basicqos方法设置prefetch_count=1,如下设置

channelbasic_qos(prefetch_count=1)

这样RabbitMQ就会使得每个Consumer在同一个时间点最多处理一个Message,换句话说,在接收到该Consumer的ack前,它不会将新的Message分发给它。但是这种方法可能会导致queue满。当然,这种情况下你可能需要添加更多的Consumer,或者创建更多的virtualHost来细化你的设计。

5、分发到多个Consumer

Direct Exchange:直接匹配,通过Exchange名称+RountingKey来发送与接收消息。

Fanout Exchange:广播订阅,向所有的消费者发布消息,但是只有消费者将队列绑定到该路由器才能收到消息,忽略Routing Key。

Topic Exchange:主题匹配订阅,这里的主题指的是RoutingKey,RoutingKey可以采用通配符,如:或#,RoutingKey命名采用英文句点来分隔多个词,只有消息将队列绑定到该路由器且指定RoutingKey符合匹配规则时才能收到消息。

Headers Exchange:消息头订阅,消息发布前为消息定义一个或多个键值对的消息头,然后消费者接收消息,同时需要定义类似的键值对请求头(如

x-mactch=all或者x_match=any),只有请求头与消息头匹配,才能接收消息,忽略RoutingKey。

默认的exchange:如果用空字符串去声明一个exchange,那么系统就会使用”amqdirect”这个exchange。我们创建一个queue时,默认的都会有一个和新建queue同名的routingKey绑定到这个默认的exchange上去。如下:

channelBasicPublish("","TaskQueue", properties, bytes);

因为在第一个参数选择了默认的exchange,而我们声明的队列叫TaskQueue,所以默认的,它要新建一个也叫TaskQueue的routingKey,并绑定在默认的exchange上,导致了我们可以在第二个参数routingKey中写TaskQueue,这样它就会找到定义的同名的queue并把消息放进去。

如果有两个接收程序都是用了同一个的queue和相同的routingKey去绑定direct exchange的话,分发的行为是负载均衡的,也就是说第一个是程序1收到,第二个是程序2收到,以此类推。

如果有两个接收程序用了各自的queue,但使用相同的routingKey去绑定direct exchange的话,分发的行为是复制的,即每个程序都会收到这个消息的副本。行为相当于fanout类型的exchange。

多个queue绑定同一个key也是可以的,对于下图的例子,Q1和Q2都绑定了black,对于routing key是black的Message,会被deliver到Q1和Q2,其余的Message都会被丢弃。

七、RPC远程过程调用

MQ本身是基于异步的消息处理,前面的示例中所有的生产者(P)将消息发送到RabbitMQ后不会知道消费者(C)处理成功或者失败(甚至连有没有消费者来处理这条消息都不知道)。 但实际的应用场景中,我们很可能需要一些同步处理,需要同步等待服务端将我的消息处理完成后再进行下一步处理。这相当于RPC(Remote Procedure Call,远程过程调用)。在RabbitMQ中也支持RPC。

RabbitMQ中实现RPC的机制如下图所示:

客户端发送请求(消息)时,在消息的属性(MessageProperties ,在AMQP 协议中定义了14种properties ,这些属性会随着消息一起发送)中设置两个值replyTo (一个Queue 名称,用于告诉服务器处理完成后将通知我的消息发送到这个Queue 中)和correlationId (此次请求的标识号,服务器处理完成后需要将此属性返还,客户端将根据这个id了解哪条请求被成功执行或执行失败)。

服务器端收到消息并处理,服务器端处理完消息后,将生成一条应答消息到replyTo 指定的Queue中 ,同时带上correlationId 属性,客户端之前已订阅replyTo 指定的Queue ,从中收到服务器的应答消息后,根据其中的correlationId 属性分析哪条请求被执行了,然后根据执行结果进行后续业务处理。

转发:https://wwwcnblogscom/jasonboren/p/13280745html

消息队列(英语:Message queue)是一种进程间通信或同一进程的不同线程间的通信方式,软件的贮列用来处理一系列的输入,通常是来自用户。

消息队列提供了异步的通信协议,每一个贮列中的纪录包含详细说明的资料,包含发生的时间,输入设备的种类,以及特定的输入参数,也就是说:消息的发送者和接收者不需要同时与消息队列交互。消息会保存在队列中,直到接收者取回它。

一个 WIMP 环境像是 Microsoft Windows,借由优先的某些形式(通常是事件的时间或是重要性的顺序)来存储用户产生的事件到一个 事件贮列 中。系统把每个事件从事件贮列中传递给目标的应用程序。

实现

实际上,消息队列常常保存在链表结构中。拥有权限的进程可以向消息队列中写入或读取消息。

目前,有很多消息队列有很多开源的实现,包括JBoss Messaging、JORAM、Apache ActiveMQ、Sun Open Message Queue、RabbitMQ、IBM MQ、Apache Qpid、Apache RocketMQ和HTTPSQS。

扩展资料:

优缺点

消息队列本身是异步的,它允许接收者在消息发送很长时间后再取回消息,这和大多数通信协议是不同的。例如WWW中使用的HTTP协议(HTTP/2之前)是同步的,因为客户端在发出请求后必须等待服务器回应。然而,很多情况下我们需要异步的通信协议。

比如,一个进程通知另一个进程发生了一个事件,但不需要等待回应。但消息队列的异步特点,也造成了一个缺点,就是接收者必须轮询消息队列,才能收到最近的消息。

和信号相比,消息队列能够传递更多的信息。与管道相比,消息队列提供了有格式的数据,这可以减少开发人员的工作量。但消息队列仍然有大小限制。

消息队列除了可以当不同线程或进程间的缓冲外,更可以透过消息队列当前消息数量来侦测接收线程或进程性能是否有问题。

既然说了大型,首先要考虑的就是高用户并发的情况。这就需要结合你实际用户端应用场景,视频都双向传输和简单的低通量的文本交互一定不是一个概念。做大型的系统,还要考虑平时的情况和突发的高占用率情况。

首先我们先对应用做一个分类:

1高带宽消耗累应用

这个方面的代表就是直播相关或网络教学领域。直播系统的大体原理,主播手机采集音视频、编码,然后推送一个视频流给服务器(实际上是一个做了负载均衡的视频服务器矩阵组)。然后负责实时流媒体数据流接收的服务器,会将流媒体数据流推送给分发服务器(现在有现成的CDN,这样开发难度就小了很多。)然后观众申请观看的时候,分发服务器就会将所申请的时时流媒体推荐给客户。

这么粗糙的应用就可能包换用户端权限管理服务器组,业务调度服务器组,不同区域IDC建立的接入服务器组,不同区域IDC建立的分发服务器组,分等级的数据存储服务器组,ai内容审核服务器组(基于分流实时分析,预设内容审核规则),归档视频存储服务器组,短视频评级推荐服务器组,应用兴趣行为分析服务器组。客户在请求交互的时候可能还会有一些缓冲的队列呀,nosql之类的(redis,memcache)。各组服务器的规格和数量都是根据同时并发的情况定的,在程序开发好的时间可以通过自动化的方式模拟高并发,再通过查看分析瓶颈,而对前期的规划做出合适的调整。

有些时间还要实现不经过分发,交互直通以降低延时。pk的连线的时候,太高延时是接受不了的。这个就不继续展开了。

还有网盘类应用也也很多类似,只是延时要求没那么高。传统的视频网站也是基本相同原理。

传统的微博也是类似的分发机制。

2低延时需求型

这方面一般是以网络游戏为主。对于一些点电子竞技类的应用,做到80ms以下的低延时是必须。服务器的核心响应速度和带宽的低延时是重点。这种服务器最好可以独享一条专线,或者在虚拟网络系统中设置一个更高的优先级,数据线优先同行也会尽可能的降低延时。至于服务器组之间的vpc也应该有一个更高的通过优先级,以保证服务器之间的访问延时极地。这种应用服务器,最好要支持核心运算,不过这个要开发的架构支持。

再就是后期用户量大的时候,做更新包下载的时候会采用分发服务器(CDN)。

3高突发的缓冲

这种都是电商网站,平时就是讲全段应用服务器做彼此依赖,后端选择一个大吞吐,大并发的后端框架(京东使用的go语言对高并发和数据挖掘就有很多优势,我也刚开始学习)。这种系统网元架构就简单很多,传统的负载均衡后挂着不同模块的应用服务器组,然后经过缓冲服务器组,之后到达数据服务器组和APIGateway。

日常的应用都是没啥问题,都是因为一些节日或促销,或爆款等发生临时性数据操作的拥堵。解决这种缓冲都方式有很多,比如临时快速读写缓存,消息队列等。甚至开发总线通信队列等待机制,很多解决方案。

现在系统本身的规划和后期都优化都有许多解决方案,现在的瓶颈往往是系统间的交互通信。

服务器种类各云服务商都称呼也不一致,总体说分为轻量应用服务器,负载均衡服务器,超算服务器(CPU和GPU两个方向,后者也常常被成为图形处理服务器。)数据服务器(常见的版本都有),文件服务器(nas和oss),分发服务器,缓冲服务器,数据分析服务器。我项目中使用大大类就这些了,也许有些我没用过和不知道的,希望大家在讨论区补充纠正。

希望对你认知有所拓展。

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » RabbitMQ架构

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情